LD5-RTT and LE5-RTT Real Time Clock/Temperature Display Operation and Instruction Manual

AMALGAMATED INSTRUMENT CO Telephone: +61 2 9476 2244 Unit 5, 28 Leighton Place Hornsby NSW 2077 Australia Facsimile: +61 2 9476 2902

ABN: 80 619 963 692 e-mail: sales@aicpl.com.au Internet: www.aicpl.com.au

Table of Contents

1	Introduction	3
2	Mechanical installation	7
3	Electrical Installation	9
4	Function tables - summary of setup functions	16
5	Explanation of functions	27
6	Technical specifications	62
7	Guarantee and service	63

1 Introduction

General description

This manual contains information for the installation and operation of the LD5-RTT and LE5-RTT displays. This instrument may be used as a 12 or 24 hour clock or may be set to display day/month/year. The \square and \square pushbuttons located at the front of the display or on the main circuit board can be used to force the display to toggle between the date, time display and temperature. In a 6 digit display a total of seven display options are available, these are:

month.day.year (a.d.) day.month.year (d.a.) hours.min.secs (H.a.) month.day (aa.dd) day.month (dd.aa) days (ddd) hours.minutes (HH.aa)

The exact display choice will depend on the number of digits in the chosen display, see **d: 5P -n9E** function in the "Explanation of functions" chapter.

Timers allow for selection of the number of seconds for temperature display followed by the number of seconds for time display.

Alarms can be set for time or temperature operation. Up to 32 alarms can be set for time and 8 for temperature. For each time alarm the start time, alarm duration, day or days of the week and relay or relays to be activated can be set. When an alarm is set functions in the temperature alarm section or time alarm section allow a relay or relays to be chosen to operate with these alarms.

An inbuilt light sensor allows the clock to automatically change its brightness level to suit the ambient light level. Alternatively the display brightness level can be set to a fixed value or toggled between a low and high brightness value via an external switch.

1.1 Selecting and altering access levels

This subsection details the use "access levels". Access levels can be used to obtain easy access to functions which are regularly required and to limit access to functions which are not required or which restricted access is required. These access level settings can be ignored if no restrictions to access are required and no easy access to selected functions is required.

Each setup function has a default access level allocated to it, for example the ascending alarm 1 function **RL.R** is allocated a default level of 2. There is a facility for the user to change the access levels for a limited number of functions to make them either easier to access or harder to access as required, see the **Fn. ICodE** function.

There are different ways of accessing setup functions, these are explained in the following section. Each mode allows a selection of access levels i.e. allows some choice of which functions are accessible.

The access levels available are:

None - no access to functions

- 1 access to functions allocated to level 1
- **2** access to functions allocated to level 2
- **3** access to functions allocated to level 3
- 4 access to functions allocated to level 4
- 5 access to functions allocated to level 5
- **6** access to functions allocated to level 6
- CAL access to all normal operation functions

1.2 Accessing setup functions

The setup functions allow adjustment of the instruments operation functions. There are five different ways of accessing setup functions. Each mode allows a selection of access levels i.e. allows some choice of which functions are accessible.

As as summary the methods available are:

- Easy mode this is the easiest access mode simply requiring the 🖬 button to be pressed for 3 seconds. This mode would normally be used to gain access to functions which require frequent adjustment.
- **Remote input mode** this uses the Easy method of access but also requires the use of a remote input switch.
- **PIN 1 mode** this method allows a PIN to be set with access via PIN entry.
- **PIN 2 mode** this method also requires a PIN and would generally be use to allow a higher access level than the first PIN.
- Super Cal mode this method requires a power up procedure and will allow access to all functions.

These modes are explained in more detail below.

Easy mode - Allows access to the level set by the ERSYLEUL function in the REES menu. By default the Easy access is set to **NONE** level i.e. no access.
 The Easy mode simply requires that the **B** button is held pressed until the message **FUNE** is seen followed by the first function message, this should take approximately 3 seconds. If the message **FUNE End** or no response is seen at this point it means that the access level has been set to **NONE**. The default access for this level is **NONE** so the access level will need to be changed if access via this method is required.

Remote input mode - Allows access to the level set by the *F.I NPLEUL* function in the *REES* menu. By default the Remote input access is set to *CRL* level allowing access to all setup functions. The remote input mode uses the same access method as the Easy mode but also requires that one of the available remote inputs is set to *REES* and that the selected remote input is activated i.e. shorted to GND. The default access for this level is *NORE* so the access level will need to be changed if access via this method is required.

Remote input mode

Also requires that the selected remote input is set to **REESS** and is activated.

PIN 1 mode - Allows access to the level set by the USr. 1LEUL function in the REES menu. The PIN 1 mode requires the ■ button is pressed and released then within 2 seconds press the ■ and ■ buttons at the same time. The PIN can be set via the P, n. 1CodE function in the REES menu. A USr. 1LEUL setting of O disables the PIN which means that there is no need to enter the PIN. If the USr. 1LEUL function has been set to a number other than NONE then the first function seen when entering via PIN 1 mode will be the function CodE. When this function is seen the PIN value set at the USr. 1LEUL function must be entered via the ▲ or ■ pushbuttons followed by pressing ■ to accept the PIN before the user can progress to the setup functions.

If a PIN has been set the message **LodE** will be seen. Use ▲ or ▲ to enter the PIN then press ■ to accept the PIN.

- PIN 2 mode Allows access to the level set by the USr.2LEUL function in the REES menu. This method uses the same access method as PIN 1 mode above. A P. n.2CodE setting of NonE disables the PIN. If the USr. 1LEUL or a USr.2LEUL function has been set to a number other than NonE then the first function seen when entering via PIN 1/PIN2 mode will be the function CodE. When this function is seen the PIN value set at the USr. 1LEUL function can be entered for access to the level set at the P. n. 1REES function. A correct code will allow access to the functions at the selected level. An incorrect code will result in the FUNE End message being seen indicating that access to setup functions has been refused and the display will return to normal measurement mode.
- Super Cal mode This method can be used to gain access to all functions. If a PIN has been set and forgotten use this method to access the PIN functions to check the settings. To access via Super Cal mode with the instrument switched off hold in the button whilst the instrument powers up. Keep the button pressed until the **5.***CRL* message is seen, you can then release the button. Next press and release the within 2 seconds press and release the and pushbuttons simultaneously.

The setup functions are organised in blocks or sections e.g. all the settings for channel 1 alarms are in the **RL** *i* section. Once access to setup functions has been gained use the \square and \square buttons to select the section required then press \square to enter this section and again us the \square and \square buttons to select the required function for alteration and press \square to allow alteration of this function.

Typical sections for a basic instrument are illustrated below. In any particular instrument additional sections may appear depending on the part number and any optional outputs fitted.

The example in the flowchart (for 4 digit display) below shows the method using display setup functions.

2 Mechanical installation

2.1 20mm, 38mm, 45mm, 57mm and 58mm LED

An optional panel mount kit is available for these size displays. Panel cut out size is 240×130 mm (-0.0mm / +0.5mm). Weight: All types 1.6kg approx.

2.2 100mm 4 digit LED

Weight 10kg (LED)

2.3 100mm 6 digit LED

Weight 14kg (LED)

2.4 200mm 4 digit LED

Weight 14kg.

2.5 Cable entry and Mounting brackets

For 20 to 58mm displays no holes are pre drilled. For all 100mm and 200mm displays 3 off 20mm holes are drilled at the bottom of the case, these are fitted with 2 x IP65 grommets and 1 x air vent which allows moisture to exit the case but not enter. Four mounting brackets and four blind grommets are supplied for use with all metal case large digit displays. Diagrams below illustrate vertical and horizontal installation for mounting brackets. If mounting without the brackets is preferred then the 9mm dia. case holes provided for the brackets can be used as alternative mounting holes. Any rear holes not used for mounting should be sealed.

3 Electrical Installation

The display is designed for continuous operation and therefore no mains/power switch is fitted to the unit. It is recommended that an external switch and fuse be provided to allow the unit to be removed for servicing. To install cables remove six front panel retaining screws. Remove front panel taking care not to damage the ribbon cable (ribbon cable joins the front display circuit board to the main circuit board). Connect power and input cables to the plug in terminal blocks located within the enclosure. The terminals are clearly labeled and unplug for ease of installation, please take care to connect them correctly. The terminal blocks allow for wires of up to 2.5mm² to be fitted (relays and power) and 1.5mm² for inputs. When power is applied the instrument will cycle through a display sequence, indicating the software version and other status information, this indicates that the instrument is functioning.

Input board layout

3.1 Power supply connections

3.2 AC supply or isolated DC supply (38, 45, 57 and 58mm displays only)

3.3 Non isolated DC supply (38, 45, 57 and 58mm displays only)

Non isolated

3.4 100mm, 200mm LED and 100mm electromagnetic display power supplies

Isolated DC supplies (12 to 24VDC) connect to the isolated supply pcb on the base board. AC supplies connect to the transformer primary on the base board. The base board is located under the input circuit board.

Optional isolated DC supply (100 and 200mm displays only)

Non isolated DC power supplies (100 and 200mm displays only

Non isolated DC supplies (24VDC) are wired to a connector on the baseboard as shown below.

High and low voltage AC supplies (100 and 200mm displays only

LD5RTTMAN-1.6-0

3.5 Temperature sensor and GPS input connections

3.6 Mains synchronisation for 100 and 200mm displays

For 100mm and 200mm displays the wiring below will be provided and will be used when main synchronisation is selected. For smaller AC powered display this connection is automatically provided via the transformer on the main board.

3.6.1 Remote/Digital inputs

The digital inputs will accept voltage free contact closure inputs or up to 24VDC signal. The electrical configuration for these inputs is configured by digital input functions, see the d. r section functions. The function of these inputs are set at the remote input functions e.g. r.; nP for remote input 1. Alternatively the remote inputs can be used to enable/disable the time alarm, see the RE 1 to RE32 d.; n function.

3.6.2 Relays

Relays are rated at 240VAC 5A into a resistive road. Relay 1 is form C type. Relays 2, 3 and 4 are form A type.

4 Function tables - summary of setup functions

Note: the order in which the functions appear on the display may not be exactly as shown below. The availability and order of functions is determined by choice of function settings and options fitted.

Actual messages seen on the display may vary slightly depending on the number of display digits.

4.1 Clock adjustment function table

Display	Function	Range	Default	Your record	Ref/Page
AJSE SECS	Adjust seconds	Any display value secs	0.0		5.1 / 27
RJSE Hour	Adjust hours	-24 to 24 hrs	0		5.2 / 27

4.2 Setup function table

Display	Function	Range	Default	Your record	Ref/Page
rte rte	Clock mode	12Hr, 24Hr	2487		5.3 / 27
rtc rtc 598C	Clock synchronisation	NonE, 50H2, 60H2, 9P5	NonE		5.4 / 28
rtc 9P5 bRud	Baud rate for GPS input	1200, 2400, 4800, 9600, 19.2, 38.4, 57.6, 115.2	9600		5.5 / 28
rte di SP rn9E	Clock display format	HH.ĂĂ, ddd, dd.ĂĂ, ĂĂ.dd	HH.55		5.6 / 28
rte rte Rj5t	Clock adjustment easy access	OFF or ON	0~		5.7 / 29
rtc utc oF5t	Universal time offset	LOCL, - 12, - 1 1, - 10, -9, -8, -7, -6, -5, -4, -3, -2, - 1, 0, 1, 2, 3, 3:30, 4, 4:30, 5, 5:30, 6, 7, 8, 9, 9:30, 10, 1 1, 12, 13	10		5.8 / 29
rtc SEt YEAF	Set year	20 10 to 2099	n/a		5.9 / 29

rte SEt ñon	Set month	JRn, FEb, ⊼Rr, APr, ⊼RY, Jun, JI Y, Ru9, SEP, Oct, Nou, dEc	n/a	5.10 / 29
rtc SEt dRy	Set day	1 to 3 1	n/a	5.11 / 30
rtc SEt t, ñE	Set time	D to 85399 secs	n/a	5.12 / 30
rtc d5t	Automatic daylight saving enable	OFF or ON	0~	5.13 / 30
rtc d5.on dRY	Daylight saving start day	1.5un, 2.5un, 3.5un, 4.5un, L.5un	1.5un	5.14 / 30
rtc d5.on ñon	Daylight saving start month	JRn, FEb, ⊼Rr, RPr, ⊼RY, Jun, JI Y, Ru9, SEP, Oct, Nou, dEc	Oct	5.15 / 31
rtc d5.of dRy	Daylight saving end day	1.5un, 2.5un, 3.5un, 4.5un, 1.5un	1.5un	5.16/31
rtc d5.oF ñon	Daylight saving end month	JRn, FEb, ⊼Rr, APr, ⊼RY, Jun, JI Y, Ru9, SEP, DcŁ, Nou, dEc	Oct	5.17 / 31
rtc No.AL	Number of time alarms	0 to 32	8	5.18/31
rte AL UNIE	Time alarm units	5EC5, 71 NS	SECS	5.19/32

4.3 Temperature function table

Display	Function	Range	Default	Your record	Ref/Page
ЕЕЋР ЕУРЕ	Temperature sensor type	NonE, rEd, 1335, 4–20, 0–10	NonE		5.20 / 32
₹555 ₽	Temperature display time	0 to 100 secs	2		5.21 / 32
EEAP rec SEC	Time display time	D to 100 secs	2		5.22 / 32
EEAP Al Cat	Number of temperature alarms	0, <i>1</i> , 2, 3, 4, 5, 6, 7, 8	2		5.23 / 33
EEAP U.CRL Fed	Uncalibrate Pt100	n/a	n/a		5.24 / 33
EEAP CRL1 FEd	Pt100 temperature calibration first point	n/a	n/a		5.25 / 33
EEAP CAL2 Fed	Pt100 temperature calibration second point	n/a	n/a		5.26 / 34
EEAP OFSE FEd	Pt100 temperature calibration offset	n/a	n/a		5.27 / 34
EEAP U.CAL 1335	Uncalibrate LM335	n/a	n/a		5.28 / 34
EEAP CAL 1 L335	LM335 temperature calibration first point	n/a	n/a		5.29 / 35
EEAP CAL2 L335	LM335 temperature calibration second point	n/a	n/a		5.30 / 35
ЕЕЛР OFSE L335	LM335 temperature calibration offset	n/a	n/a		5.31 / 36
EEAP Eam	Enter 4mA temperature display value	n/a	n/a		5.32/36
EUSO	Enter 20mA temperature display value	n/a	n/a		5.33 / 36
ЕЕЛР U.CRL I П I	Uncalibrate 4-20mA temperature display	n/a	n/a		5.34 / 37
ЕЕЋР СЯЦ 1 1 П 1	4-20mA temperature calibration first point	n/a	n/a		5.35 / 37

EEAP CAL2 I N I	4-20mA temperature calibration second point	n/a	n/a	5.36 / 37
EEAP OFSE INI	4-20mA temperature calibration offset	n/a	n/a	5.37 / 38
EEAP U.CRL I N2	Uncalibrate 0-10V temperature display	n/a	n/a	5.38 / 38
ЕЕЋР СЯС I I П 2	0-10V temperature calibration first point	n/a	n/a	5.39 / 39
FEYA CUFS I US	0-10V temperature calibration second point	n/a	n/a	5.40 / 39
EEAP OFSE INZ	0-10V temperature calibration offset	n/a	n/a	5.41 / 40
LEAP °C.dP	Temperature display decimal point	0, 0. 1	0	5.42 / 40
ΕΕ⊼Ρ Φ[Ποι Ε	Temperature unit display	₀ <u>ר,</u> ₀, ַר	٥٢	5.43 / 40
EEAP PC FIEr	Temperature display filter	0, <i>1, 2, 3,</i> 4, 5, 6, 7, 8	8	5.44 / 41

4.4 Temperature function table

Display	Function	Range	Default	Your record	Ref/Page
AL 1 to AL 8 Hi 9h	High setpoint value for designated alarm relay	Any display value or DFF	OFF	See 4.12	5.45 / 41
AL 1 to AL 8 Lo	Low setpoint value for designated alarm relay.	Any display value or DFF	OFF	See 4.12	5.46 / 42
AL 1 to AL 8 HYSE	Alarm relay hysteresis (deadband)	0 to 65535	10	See 4.12	5.47 / 42
AL 1 to AL 8 Er, P	Trip time delay for the designated alarm relay	D to 5553.5 secs	0.0	See 4.12	5.48 / 43
AL 1 to AL 8 FSE	Reset time delay for the designated alarm relay	D to 5553.5 secs	0.0	See 4.12	5.49 / 43
AL 1 to AL 8 FLYS	Relay selection D or DFF	On or OFF	OFF	See 4.12	5.50 / 44

AL 1 to AL 8 EFL	Alarm trailing or setpoint mode	5EE.P, EL 1, EL 2, EL 3, EL 4, EL 5, EL 6, EL 7	SEŁ.P	See 4.12	5.51 / 44
AL Ito AL 8 Lech	Alarm relay latching operation	Auto, Ltch, A.b, L.b	Ruto	See 4.12	5.52 / 44

4.5 Relay settings function table

Display	Function	Range	Default	Your record	Ref/Page
FL Ito FL8 FLY	Alarm relay x action to normally open (de-energised) or normally closed (energised)	n.o, n.c	n.a	See 4.12	5.53 / 45
ΓL 1 to ΓL 8 Β∈Ϝ	Relay acknowledge	DFF or DN	OFF	See 4.12	5.54 / 45
ΓL 1 to ΓL 8 Βοοί	Temperature alarm relay Boolean logic operation	Or, Rod	Or	See 4.12	5.55 / 45

4.6 Time alarm function table

Display	Function	Range	Default	Your record	Ref/Page
AE 1 to AE32 Do	Alarm on time	O to 1439 mins	n/a	See 4.12	5.56 / 46
RE 1 to RE32 dUF	Alarm duration	C to Maximum display value secs	n/a	See 4.12	5.57 / 46
RE 1 to RE32 dRY	Alarm days	ñon, EuE, ūEd, Ehu, Fri, SAE, Sun	n/a	See 4.12	5.58 / 46
ЯЕ 1 to ЯЕ32 ГLУ	Alarm relays	ГLУ. 1, ГLУ.2, ГLУ.3, ГLУ.4	n/a	See 4.12	5.59 / 47
RE 1 to RE32 d.1 N	Remote input alarm enable	а.) П. І, а.) П.2, а.) П.3, а.) П.ч	n/a	See 4.12	5.60 / 47

4.7 Display function table

Display	Function	Range	Default	Your record	Ref/Page
d: SP br9t Ruto	Automatic display brightness	OFF or ON	0^		5.61 / 47
di SP br9t	Display brightness	; to 53	63		5.62 / 48
di SP dul I	Dimmed display brightness	D to 53	ר		5.63 / 48
d: 5P Ruto H, 9h	Auto display brightness high level	15 to 63	63		5.64 / 48
d:SP Ruto Lo	Auto display brightness low level	t to 63	٦		5.65 / 48
di SP d.OFF	Display dim timer	D to Maximum display value mins	0		5.66 / 49

4.8 Remote inputs function table

Display	Function	Range	Default	Your record	Ref/Page
Г.) ПР Р.БоЕ	Front P button operation mode	NONE, P.H. , P.Lo, HLo, RL.Rc	ΠΟΠΕ		5.67 / 49
Г.) ПР Г.) П. 1	Remote input 1 operation mode	NONE, P.HI d, d.HI d, P.H, , P.Lo, Hi .Lo, RL.Rc, REES, P.but, F.but, U.but, d.but, dul I, b.I nc, b.dEc	NONE		5.68 / 49
Г.) ПР Г.) П.2	Remote input 2 operation mode	NDNE, P.HI d, d.HI d, P.H, , P.Lo, Hi .Lo, RL.Rc, REES, P.but, F.but, U.but, d.but, dul I , b.I oc, b.dEc	ΠΟΠΕ		5.69 / 50

Г.) ПР Г.) П.Э	Remote input 3 operation mode	ПОПЕ, Р.Н. d, d.H. d, P.H. , P.Lo, HLo, RL.Rc, REES, P.but, F.but, U.but, d.but, dul I , b.I nc, b.dEc	ΠΟΠΕ	5.70 / 51
Г.) ПР Г.) П.Ч	Remote input 4 operation mode	ПОПЕ, Р.Н. d, d.H. d, P.H. , P.L.a, HL.a, RL.R.c, REES, P.but, F.but, U.but, d.but, dul I, b.I.nc, b.dEc	NONE	5.71 / 51

4.9 Remote inputs configuration function table

Display	Function	Range	Default	Your record	Ref/Page
d.: n d.: n. 1 P.UP	Remote input (digital inputs) 1 pull up/down operation	OPEn, Hi 9h, Lo	H, 9h		5.72 / 51
d.; n d.; n, 1 Lut	Remote input (digital inputs) 1 input level	Hi 9h, Lo	Lo		5.73 / 51
d., n d., n.2 P.UP	Remote input (digital inputs) 2 pull up/down operation	OPEn, Hi 9h, Lo	H, 9h		5.74 / 52
d., n d., n.2 Lul	Remote input (digital inputs) 2 input level	Hi 9h, Lo	Lo		5.75 / 52
d.+ n d.+ n.3 P.UP	Remote input (digital inputs) 3 pull up/down operation	OPEn, Hi 9h, Lo	H, 9h		5.76 / 52
d., n d., n.3 Lui	Remote input (digital inputs) 3 input level	H, 9h, Lo	Lo		5.77 / 53
d., n d., n.4 P.UP	Remote input (digital inputs) 4 pull up/down operation	OPEn, Hi 9h, Lo	H, 9h		5.78 / 53
d., n d., n.4 Lui	Remote input (digital inputs) 4 input level	H, 9h, Lo	Lo		5.79 / 53

4.10 Serial option function table

Display	Function	Range	Default	Your record	Ref/Page
SErl OPEr	Serial output operation mode (* Optional)	NONE, Cont, Poll, R.buS, d. SP, ñ.buS, UPdt	ΠΟΠΕ		5.80 / 53
SEr¦ bRud	Serial baud rate (* Optional)	1200, 2400, 4800, 9600, 19.2, 38.4, 57.6, 115.2	9600		5.81 / 54
SErl Prły	Serial parity (* Optional)	ר, 8E, 8O, ד E, 7O	80		5.82 / 55
SEri Uni E Rddr	Serial address (* Optional)	1 to 127	1		5.83 / 55
SEr: Err d: SP	Send error display	OFF or ON	0~		5.84 / 55

4.11 Access function table

Display	Function	Range	Default	Your record	Ref/Page
ACCES EASY LEUL	Easy access mode	NONE, 1, 2, 3, 4, 5, 6, CAL	ΠΟΠΕ		5.85 / 55
RCCES F,I NP LEUL	Remote input access mode	NONE, 1, 2, 3, 4, 5, 6, CAL	ΠΟΠΕ		5.86 / 56
RCCES USF.1 Pin	PIN code 1	0 to 65535	٥		5.87 / 56
ACCES USF.1 LEUL	PIN code 1 access level	NONE, 1, 2, 3, 4, 5, 6, CAL	ΠΟΠΕ		5.88 / 56
RCCES USF.2 Pro	PIN code 2	0 to 65535	0		5.89 / 57
ACCES USF.2 LEUL	PIN code 2 access level	ПОПЕ, 1, 2, 3, Ч, 5, 6, САL	ΠΟΠΕ		5.90 / 57
RECES Fn. 1 CodE	User assignable access function 1	hex.	0000		5.91 / 57
ACCES Fo. 1 LEUL	User assignable access 1 level value	dFIE, 1,2,3, 4,5,6,CAL, 5.CAL	dFit		5.92 / 58

RCCES Fn.2 CodE	User assignable access function 2	hex.	0000	5.93 / 58
RCCES Fn.2 LEUL	User assignable access 2 level value	dFI E, 1,2,3, 4,5,6,CRL, 5.CRL	dF; E	5.94 / 58
RCCES Fn.3 CodE	User assignable access function 3	DDDD to FFFF hex.	0000	5.95 / 58
RCCES Fn.3 LEUL	User assignable access 3 level value	dF; L, 1, 2, 3, 4, 5, 6, CRL, 5.CRL	dFie	5.96 / 59
RECES Fn.4 CodE	User assignable access function 4	DDDD to FFFF hex.	0000	5.97 / 59
RCCES Fa.4 LEUL	User assignable access 4 level value	dF; E, 1, 2, 3, 4, 5, 6, CRL, 5.CRL	dFlE	5.98 / 59
RECES Fn.S CodE	User assignable access function 5	DDDD to FFFF hex.	0000	5.99 / 59
RCCES Fn.S LEUL	User assignable access 5 level value	dFIE, 1,2,3, 4,5,6,CRL, 5.CRL	dF; E	5.100 / 60
RECES Fn.6 CodE	User assignable access function 6	DDDD to FFFF hex.	0000	5.101 / 60
RCCES Fn.6 LEUL	User assignable access 6 level value	dFIE, 1,2,3, 4,5,6,CRL, 5.CRL	dF; E	5.102 / 60
RCCES Fn.7 CodE	User assignable access function 7	DDDD to FFFF hex.	0000	5.103 / 60
RCCES Fo.7 LEUL	User assignable access 7 level value	dFI E, 1,2,3, 4,5,6,CRL, 5.CRL	dF; E	5.104 / 61
RECES Fn.8 CodE	User assignable access function 8	hex.	0000	5.105 / 61
RECES Fn.8 LEUL	User assignable access 8 level value	dF; E, 1, 2, 3, 4, 5, 6, CRL, 5.CRL	dF; E	5.106 / 61

4.12 Alarm and relay tables

Note: 4 relays are provided as standard - 4 extra relays are optionally available

Record your time alarm settings in the table below. See next page for temperature alarm table and relay table.

Display	0^	аиг	dRy	LA	d.) N
RE 1					
RF5					
RE 3					
REY					
RES					
RE6					
REJ					
RE8					
858					
RE 10					
RE 11					
RE 12					
RE 13					
RE 14					
RE 15					
RE 16					
RE 17					
8E 18					
RE 19					
8F50					
8F5 t					
8F55					
8F53					
RE54					
RE52					
8F52					
RF5J					
8F58					
8558					
RE 30					
8£3 (
RE 32					

Record your temperature alarm settings in the table below.

Display	H, 9H	Lo	XY5E	Er, P	r se	rlys	FL	Ltch
AL I								
AF5								
AL 3								
RLY								
RLS								
AL 6								
RL 7								
AL 8								

Record your relay settings in the table below.

Display	Relay 1	Relay 2	Relay 3	Relay 4	Relay 5	Relay 6	Relay 7	Relay 8
FLY								
Rch								
bool								

5 Explanation of functions

The setup and calibration functions are configured through a push button sequence. The push buttons located at the front of the instrument or on the main circuit board are used to alter settings.

Display messages shown are those which would appear on a display with 4 digits for the process reading, these display messages may in some cases vary slightly for other display types.

Note: default access levels for each function are shown in this section but the access levels are not applicable to this software version.

Explanation of Functions

5.1 Adjust seconds

Section:	RJSE
Display:	5805
Range:	Any display value secs
Default Value:	0.0
Default Access Level	dF; E
Function number	7805

Allows addition or subtraction of a number seconds and tenths of seconds from the current time e.g. if the display is 5 seconds fast select **-5.0** at this function to adjust the time.

5.2 Adjust hours

Section:	RJSE
Display:	Hour
Range:	-24 to 24 hrs
Default Value:	0
Default Access Level	dF; E
Function number	7804

Allows addition or subtraction of a number hours from the current time e.g. if the display is 1 hour slow select *t* at this function to adjust the time.

5.3 Clock mode

Section:	rtc
Display:	rtc
Range:	IZHr, Z4Hr
Default Value:	2482
Default Access Level	ч
Function number	2085

This function allows the clock to be set either as a 12 hour or 24 hour clock display

5.4 Clock synchronisation

rtc
rte SYNC
NonE, 50H2, 60H2, 9P5
NonE
ч
803

This function allows the clock to synchronisation be set as one of the following: **DAE** - internal clock synchronised **SOH2** - 50Hz reference taken from AC supply (not applicable to DC supply models) **SOH2** - 60Hz reference taken from AC supply (not applicable to DC supply models) **SP5** - GPS synchronisation (requires suitable external GPS module) **REP** - NTP synchronisation from internet connection (LE5 version only)
A SYNC FRI L message will be seen if the synchronisation input is not found.

5.5 Baud rate for GPS input

1 15.2

Sets the baud rate for GPS input. Select the required baud rate to match the GPS output. For the Garmin GPS18X-LVC model commonly supplied with this clock the baud rate must be set to 4800.

5.6 Clock display format

Section:	rtc
Display:	d, SP rage
Range:	HH.ĀĀ, ddd, dd.ĀĀ, ĀĀ.dd
Default Value:	нн.аа
Default Access Level	4
Function number	7804

Formats available depend on number of display digits, examples shown below are for a 6 digit display. This function allows the clock to be set to display in the following modes:

 H.A.S - hours.minutes.seconds

 H.A.S - hours,minutes

 ddd - days

 dd.A.S - day.month

 A.A.S - month.day

 d.A.S - day.month.year

 A.d.S - month.day.year

5.7 Clock adjustment easy access

Section:	rtc
Display:	rte AJSt
Range:	OFF or ON
Default Value:	0n
Default Access Level	ч
Function number	7809

The functions **RJSE SECS** and **RJSE** hour are placed at the beginning of the function table to give easy access for basic adjustment. When set to **D** Π the operator may gain access to the first two functions simply by entering via FUNC mode (see the "Accessing setup functions" section in th Introduction chapter). When set to **D**FF the operator must enter via S.CAL mode to gain access to these functions.

5.8 Universal time offset

Section:	rtc
Display:	utc oF5t
Range:	LOCL, - 12, - 1 1, - 10, -9, -8, -7, -6, -5, -4, -3, -2, - 1, 0, 1, 2, 3,
	3:30, 4, 4:30, 5, 5:30, 6, 7, 8, 9, 9:30, <i>1</i> 0, <i>11, 1</i> 2, <i>1</i> 3
Default Value:	10
Default Access Level	4
Function number	0443

Universal time offset for GPS synchronisation (-12 to +13 hours) - sets the offset in hours from universal time. When using optional GPS synchronisation the time signal transmitted uses a "universal time". The offset function allows the local offset from this "universal" time to be input in minutes. For example if local time is 10 hours ahead of GPS universal time then set $\Box E \subset \Box F E$ to 10.

5.9 Set year

Section:	rtc
Display:	SEL YEAR
Range:	20 10 to 2099
Default Value:	n/a
Default Access Level	4
Function number	7808

This function is used to set the current year. This is necessary when a year display is required and for correct automatic daylight saving adjustment.

5.10 Set month

Section:	rtc
Display:	SEt ñon
Range:	JRn, FEb, ARr, APr, ARY, Jun, JI Y, Ru9, SEP, Oct, Nou, dEc
Default Value:	n/a
Default Access Level	ų
Function number	r 08 r

This function is used to set the current month.

5.11 Set day

Section:	rtc
Display:	SEF 987
Range:	to 31
Default Value:	n/a
Default Access Level	ч
Function number	7806

This function is used to set the current day.

5.12 Set time

Section:	rtc
Display:	SEL LA AE
Range:	0 to 86399 secs
Default Value:	n/a
Default Access Level	4
Function number	7805

This function is used to set the current time.

5.13 Automatic daylight saving enable

Section:	rtc
Display:	45E
Range:	OFF or ON
Default Value:	0~
Default Access Level	ч
Function number	Оччь

Daylight saving time automatic adjustment (ON or OFF) - If automatic daylight saving time adjustment is not required set this function to DFF. If automatic daylight saving time adjustment is required set this function to DFF.

5.14 Daylight saving start day

Section:	rtc
Display:	d5.on dRY
Range:	1.5un, 2.5un, 3.5un, 4.5un, L.5un
Default Value:	1.500
Default Access Level	ч
Function number	0444

Daylight saving time start day. Select the first, second, third, fourth or last Sunday in the month as the start day for daylight saving.

5.15 Daylight saving start month

Section:	rtc
Display:	d5.on ñon
Range:	JRn, FEb, ARr, APr, ARY, Jun, JI Y, Ru9, SEP, Oct, Nou, dEc
Default Value:	Oct
Default Access Level	4
Function number	0446

Daylight saving time start month. Select the required start month for daylight saving adjustment.

5.16 Daylight saving end day

Section:	rtc
Display:	d5.oF dRY
Range:	I.Sun, 2.Sun, 3.Sun, 4.Sun, L.Sun
Default Value:	1.5un
Default Access Level	ч
Function number	0445

Daylight saving time end day. Select the first, second, third, fourth or last Sunday in the month as the end day for daylight saving.

5.17 Daylight saving end month

Section:	rtc
Display:	d5.oF ñon
Range:	JRn, FEb, ARr, RPr, ARY, Jun, JI Y, Ru9, SEP, Oct, Nou, dEc
Default Value:	Oct
Default Access Level	ч
Function number	0447

Daylight saving time end month. Select the required end month for daylight saving adjustment.

5.18 Number of time alarms

Section:	rtc
Display:	No.RL
Range:	0 to 32
Default Value:	8
Default Access Level	ч
Function number	780R

Sets the number of time alarms required, maximum is 32.

5.19 Time alarm units

Section:	rtc
Display:	AF NULF
Range:	5ECS, 71 NS
Default Value:	5805
Default Access Level	ч
Function number	780E

Selects if the time alarm units are to be in seconds or minutes. These are the units which will be used by the alarm duration function e.g. **RL** *i dUF* function.

5.20 Temperature sensor type

Section:	EEAP
Display:	FAbe
Range:	NonE, rtd, L335, 4-20, 0-10
Default Value:	NonE
Default Access Level	ч
Function number	01 Br

This function is used to select the type of temperature sensor to be used. Select **new** if no temperature sensor is used. Select **red** for 2 or 3 wire Pt100 temperature sensor or select **L335** for LM335 type sensor, or select **4-20** for 4-20mA type input. A non standard 0-10V temperature input can be fitted to order, if this has not been fitted the **D-10** choice will not be seen. See the "Electrical Installation" chapter for details of connectors and wiring to be used.

5.21 Temperature display time

Section:	FEYb
Display:	°C 58C5
Range:	O to IOO secs
Default Value:	2
Default Access Level	ч
Function number	1811

This function is used to select the number of second for which the temperature will be displayed before the display toggles to the time display. A setting of \Box will disable the temperature display.

5.22 Time display time

Section:	EEAP	
Display:	rtc SEC	
Range:	0 to 100 secs	
Default Value:	2	
Default Access Level	ч	
Function number	78 <i>12</i>	

This function is used to select the number of second for which the time will be displayed before the display toggles to the temperature. A setting of \Box will disable the time display.

5.23 Number of temperature alarms

Section:	FEYb
Display:	AL Cot
Range:	0, 1, 2, 3, 4, 5, 6, 7, 8
Default Value:	2
Default Access Level	ч
Function number	4378

This function is used to select the number of alarms allocated for temperature operation. Up to 8 alarms can be selected at this function.

5.24 Uncalibrate Pt100

Section:	FEYb	
Display:	U.C.AL	۲Ł۵
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	0290	

This function is used to clear the calibration of the Pt100 temperature sensor and return it to the default factory scaling. To uncalibrate go to the **U.CRL FEd** function and press **T** then use the **D** pushbutton to select **S** and press **T** again to accept the uncalibration. A message will be seen to indicate that the uncalibration has ended. If the temperature reading is not close to actual temperature it can be useful to uncalibrate the temperature before attempting a new calibration. If the temperature reading is not close to actual temperature to actual temperature after uncalibration check the temperature sensor and wiring.

5.25 Pt100 temperature calibration first point

Section:	FEYb
Display:	EAF1 LF9
Range:	n/a
Default Value:	n/a
Default Access Level	EAL
Function number	0600

A 2 point calibration is available for the Pt100 temperature sensor for fine adjustment of the temperature reading. The procedure for performing the temperature sensor first calibration point is:

- 1. Place the temperature sensor in a known low temperature environment e.g. an ice slurry will give a temperature of 0° C.
- 2. Allow the temperature reading time to stabilise.
- 3. At the **CRL** : **FEd** function press **and** then press **b** to toggle the display to **SES** and press **b** again. The display will give a live temperature reading which should be stable.
- 4. Press **□**, the display will show the message **EEAP CRL ! SELE** followed by a value. If necessary use the **△** or **△** button to change this value to the known temperature at the probe.
- 5. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all connections to the temperature sensor and try calibration again.
- 6. Now perform the second calibration, see next function below.

5.26 Pt100 temperature calibration second point

Section:	FEYb	
Display:	CAL2	۲۲d
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	O6 10	

A second point using a different temperature input is required to complete the temperature calibration. The procedure is as follows://

- 1. Place the temperature sensor in a known temperature environment at least 10 degrees higher than the first point calibration temperature.
- 2. Allow the temperature reading time to stabilise.
- 3. At the **CRL2 FEd** function press **and** then press **b** to toggle the display to **BES** and press **b** again. The display will give a live temperature reading which should be stable.
- 4. Press □, the display will show the message EEAP CRL2 SCLE followed by a value. If necessary use the or □ button to change this value to the known temperature at the probe.
- 5. Press 🖬 to accept the change. The message **CRL End** should be seen. If any error message is seen check all connections to the temperature sensor and try calibration again.

5.27 Pt100 temperature calibration offset

Section:	EEAP	
Display:	OFSE	۲۲d
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	0660	

When the temperature reading has an error across its measuring range e.g. reading 2 degrees high across its whole range the temperature reading can be altered by the "offset" method rather than needing to perform a 2 point calibration. The procedure is as follows://

- 1. At the **OF5t Ftd** function press **and** then press **to** to toggle the display to **Stars** and press **again**. The display will give a live temperature reading which should be stable.
- 2. Press □, the display will show the message EEAP OFSE followed by a value. If necessary use the □ or □ button to change this value to the known temperature at the probe.
- 3. Press **I** to accept the change. The message **DF5t End** should be seen. I

5.28 Uncalibrate LM335

Section:	FEYb	
Display:	U.C.AL	L 335
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	0PS (

This function is used to clear the calibration of the LM335 temperature sensor and return it to the default factory scaling. To uncalibrate go to the U.CRL FEd function and press 🖬 then use the 🛆 pushbutton to select $\forall ES$

and press 🖬 again to accept the uncalibration. A message will be seen to indicate that the uncalibration has ended. If the temperature reading is not close to actual temperature it can be useful to uncalibrate the temperature before attempting a new calibration. If the temperature reading is not close to actual temperature after uncalibration check the temperature sensor and wiring.

5.29 LM335 temperature calibration first point

Section:	FEYb
Display:	CAL L335
Range:	n/a
Default Value:	n/a
Default Access Level	CAL
Function number	O6O (

A 2 point calibration is available for the LM335 temperature sensor for fine adjustment of the temperature reading. The procedure for performing the temperature sensor first calibration point is:

- 1. Place the temperature sensor in a known low temperature environment e.g. an ice slurry will give a temperature of 0° C.
- 2. Allow the temperature reading time to stabilise.
- 3. At the **CRL** : **FEd** function press **and** then press **b** to toggle the display to **BES** and press **b** again. The display will give a live temperature reading which should be stable.
- 4. Press **□**, the display will show the message **EEAP CRL ! SELE** followed by a value. If necessary use the **△** or **∨** button to change this value to the known temperature at the probe.
- 5. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all connections to the temperature sensor and try calibration again.
- 6. Now perform the second calibration, see next function below.

5.30 LM335 temperature calibration second point

Section:	FEYb	
Display:	CAL2	L 335
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	O6 / /	

A second point using a different temperature input is required to complete the temperature calibration. The procedure is as follows://

- 1. Place the temperature sensor in a known temperature environment at least 10 degrees higher than the first point calibration temperature.
- 2. Allow the temperature reading time to stabilise.
- 3. At the **CRL2 FEd** function press **and** then press **b** to toggle the display to **BES** and press **b** again. The display will give a live temperature reading which should be stable.
- 4. Press **□**, the display will show the message **EEAP CAL2 SELE** followed by a value. If necessary use the **△** or **△** button to change this value to the known temperature at the probe.
- 5. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all connections to the temperature sensor and try calibration again.

5.31 LM335 temperature calibration offset

Section:	FEYb	
Display:	OFSE	L 335
Range:	n/a	
Default Value:	n/a	
Default Access Level	EAL	
Function number	066 (

When the temperature reading has an error across its measuring range e.g. reading 2 degrees high across its whole range the temperature reading can be altered by the "offset" method rather than needing to perform a 2 point calibration. The procedure is as follows://

- 1. At the **OFSE FEd** function press **and** then press **to** to toggle the display to **SES** and press **again**. The display will give a live temperature reading which should be stable.
- 2. Press □, the display will show the message EEAP OFSE followed by a value. If necessary use the □ or □ button to change this value to the known temperature at the probe.
- 3. Press **I** to accept the change. The message **DF5** End should be seen. I

5.32 Enter 4mA temperature display value

Section:	FEYb
Display:	Eny
Range:	n/a
Default Value:	n/a
Default Access Level	ERL
Function number	4 7 O O

This method can be used as an alternative to the live input calibration for 4-20mA temperature inputs. This method allows the user to simply enter a temperature value to be displayed for a 4mA input. At the $\mathbf{E} \circ \mathbf{Y}$ function press \mathbf{E} the display value will flash, use the \mathbf{A} or \mathbf{Y} pushbutton to change the value displayed to that required for a 4mA input then press \mathbf{E} to accept the change.

5.33 Enter 20mA temperature display value

Section:	EEAP
Display:	E~20
Range:	n/a
Default Value:	n/a
Default Access Level	EAL
Function number	סו רצ

This method can be used as an alternative to the live input calibration for 4-20mA temperature inputs. This method allows the user to simply enter a temperature value to be displayed for a 20mA input. At the $\mathbf{E} \cap \mathbf{20}$ function press **E** the display value will flash, use the **A** or **P** pushbutton to change the value displayed to that required for a 4mA input then press **E** to accept the change.

5.34 Uncalibrate 4-20mA temperature display

Section:	FEYb		
Display:	U.C.AL	I N	ł
Range:	n/a		
Default Value:	n/a		
Default Access Level	ERL		
Function number	0655		

This function is used to clear the calibration of the 4-20mA (IN 1) temperature sensor and return it to the default factory scaling. To uncalibrate go to the $U.CRL \ IR \ I$ function and press \Box then use the \Box pushbutton to select $\exists E S$ and press \Box again to accept the uncalibration. A message will be seen to indicate that the uncalibration has ended. Once uncalibrated a 4mA input will show a temperature of 4 degrees C and a 20mA input will show a temperature of 20 degrees C.

5.35 4-20mA temperature calibration first point

ection:	FEUD
)isplay:	EALIIN
Range:	n/a
Default Value:	n/a
Default Access Level	C AL
Sunction number	0602
Display: Range: Default Value: Default Access Level Function number	СЯL () П n/a n/a СЯL ОБО2

A 2 point calibration is available for the 4-20mA temperature input (IN1) for fine adjustment of the temperature reading. The procedure for performing the temperature sensor first calibration point is:

- 1. Apply an input of a known temperature.
- 2. At the **CRL** *i i f* unction press **□** and then press **□** to toggle the display to **∀E5** and press **□** again. The display will give a live temperature reading which should be stable.
- 3. Press **□**, the display will show the message **EEAP CRL ! SELE** followed by a value. If necessary use the **△** or **△** button to change this value to the known temperature at the probe.
- 4. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all temperature input connections and try calibration again.
- 5. Now perform the second calibration, see next function below.

5.36 4-20mA temperature calibration second point

Section:	EEAP
Display:	CAFS IUI
Range:	n/a
Default Value:	n/a
Default Access Level	ERL
Function number	06 IS

A 2 point calibration is available for the 4-20mA temperature input for fine adjustment of the temperature reading. The procedure for performing the temperature sensor second calibration point is:

1. Apply an input of a known temperature different by at least 10 percent to that of the signal applied at **CRL** : , **R** :

- 2. At the **CRL2** : **R** : function press **and** then press **b** to toggle the display to **JE5** and press **b** again. The display will give a live temperature reading which should be stable.
- 3. Press **□**, the display will show the message **EEAP CRL2 SCLE** followed by a value. If necessary use the **△** or **△** button to change this value to the known temperature at the probe.
- 4. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all temperature input connections and try calibration again.

5.37 4-20mA temperature calibration offset

Section:	FEYb		
Display:	OFSE	<u>; П</u>	ł
Range:	n/a		
Default Value:	n/a		
Default Access Level	ERL		
Function number	0662		

When the temperature reading has an error across its measuring range e.g. reading 2 degrees high across its whole range the temperature reading can be altered by the "offset" method rather than needing to perform a 2 point calibration. The procedure is as follows://

- 1. At the **OF5E I** function press **I** and then press **I** to toggle the display to **YE5** and press **I** again. The display will give a live temperature reading which should be stable.
- 2. Press □, the display will show the message EEAP OFSE followed by a value. If necessary use the □ or □ button to change this value to the known temperature at the probe.
- 3. Press **I** to accept the change. The message **OF5t End** should be seen.

5.38 Uncalibrate 0-10V temperature display

Section:	FEYb	
Display:	U.C.AL	1 1 2
Range:	n/a	
Default Value:	n/a	
Default Access Level	ERL	
Function number	0624	

Only seen if the special hardware modification for 0-10V input for temperature display has been fitted. This function is used to clear the calibration of the 0-10V (input 2) temperature input and return it to the default factory scaling. To uncalibrate go to the **U.CRL IR2** function and press **I** then use the **D** pushbutton to select **JE5** and press **D** again to accept the uncalibration. A message will be seen to indicate that the uncalibration has ended. Once uncalibrated a 0V input will show a temperature of 0 degrees C and a 10V input will show a temperature of 100 degrees C. Note since a 0V input is effectively ground the display may give an error message until the input is slightly above 0V.

5.39 0-10V temperature calibration first point

Section:	FEYb
Display:	CALIIUS
Range:	n/a
Default Value:	n/a
Default Access Level	ERL
Function number	0604

Only seen if the special hardware modification for 0-10V input for temperature display has been fitted. A 2 point calibration is available for the 0-10V temperature input (IN2) for fine adjustment of the temperature reading. Since a zero volt input can be prone to noise pickup it is best to perform the first calibration point above zero volts e.g. 1V. A 0V input may show as an error message on the display. The procedure for performing the temperature sensor first calibration point is:

- 1. Apply an input of a known temperature.
- 2. At the **CRL** *i i n* **2** function press **■** and then press **■** to toggle the display to **∀E5** and press **■** again. The display will give a live temperature reading which should be stable.
- 3. Press **□**, the display will show the message **E∂PCRL i SCLE** followed by a value. If necessary use the **□** or **□** button to change this value to the known temperature at the probe.
- 4. Press 🖬 to accept the change. The message **CRL End** should be seen. If any error message is seen check all temperature input connections and try calibration again.
- 5. Now perform the second calibration, see next function below.

5.40 0-10V temperature calibration second point

Section:	FEYb
Display:	CAFS 1US
Range:	n/a
Default Value:	n/a
Default Access Level	ERL
Function number	06 IY

Only seen if the special hardware modification for 0-10V input for temperature display has been fitted. A 2 point calibration is available for the 0-10V temperature input for fine adjustment of the temperature reading. The procedure for performing the temperature sensor second calibration point is:

- 1. Apply an input of a known temperature different by at least 10 percent to that of the signal applied at **CRL : ; n2**.
- 2. At the **CRL2** : **∩2** function press **■** and then press **■** to toggle the display to **∀E5** and press **■** again. The display will give a live temperature reading which should be stable.
- 3. Press **□**, the display will show the message **EEAP CAL2 SELE** followed by a value. If necessary use the **△** or **△** button to change this value to the known temperature at the probe.
- 4. Press **I** to accept the change. The message **CRL End** should be seen. If any error message is seen check all temperature input connections and try calibration again.

5.41 0-10V temperature calibration offset

Section:	FEYb	
Display:	OFSE	1 11 2
Range:	n/a	
Default Value:	n/a	
Default Access Level	EAL	
Function number	0664	

Only seen if the special hardware modification for 0-10V input for temperature display has been fitted. When the temperature reading has an error across its measuring range e.g. reading 2 degrees high across its whole range the temperature reading can be altered by the "offset" method rather than needing to perform a 2 point calibration. The procedure is as follows://

- 1. At the **OF5E I R2** function press **I** and then press **X** to toggle the display to **YE5** and press **I** again. The display will give a live temperature reading which should be stable.
- 2. Press □, the display will show the message EEAP OFSE followed by a value. If necessary use the □ or □ button to change this value to the known temperature at the probe.
- 3. Press **I** to accept the change. The message **OF5t End** should be seen.

5.42 Temperature display decimal point

Section:	FEYb
Display:	°E.dP
Range:	0, 0. I
Default Value:	0
Default Access Level	ч
Function number	78 I 3

The temperature display can be set for zero or one decimal point display resolution. When set for one decimal place (**B**. t setting) it may be necessary to change the units display at the **C Un**, **E** in order to fit the temperature reading on the display if a 4 digit display is used, see the **C Un**, **E** for further details.

5.43 Temperature unit display

Section:	FEYb
Display:	°E Unit
Range:	° <u>C,</u> °, <u>C</u>
Default Value:	٥٢
Default Access Level	ч
Function number	78 /F

The temperature display can be set to show the units ${}^{\circ}C$, ${}^{\circ}$ or C after the temperature. When a temperature display resolution of 0.1 degrees is selected at the ${}^{\circ}C.dP$ function the temperature range will be allow from - $!.9{}^{\circ}C$ to $9.9{}^{\circ}C$ or - $!9.9{}^{\circ}$ to $99.9{}^{\circ}C$ or - $!9.9{}^{\circ}C$ to $99.9{}^{\circ}C$ for a 4 digit display.

5.44 Temperature display filter

Section:	FEYb
Display:	°[F¦ Er
Range:	0, 1, 2, 3, 4, 5, 6, 7, 8
Default Value:	8
Default Access Level	ч
Function number	7822

The temperature display filter can be used to reduce display variation due to noise pickup from the sensor, if fluctuations occur increase the value of the filter.

5.45 Alarm relay high setpoint

Section:	AL I to AL B
Display:	H, 9h
Range:	Any display value or DFF
Default Value:	OFF
Default Access Level	2
Function number	4000 to 4007

Displays and sets the high setpoint value for the designated alarm relay. Use this high setpoint function if a relay operation is required when the display value becomes equal to or more than the low setpoint value.

To set the high alarm value go to the H, Sh function, press \square and when you see a digit of the value flash use the \square or \square push buttons to set the required value then press \square to accept this selection. The high alarm setpoint may be disabled by pressing the \square and \square push buttons simultaneously. When the alarm is disabled the display will indicate DFF. If the relay is allocated both a low and high setpoint then the relay will activate when the value displayed moves outside the band set by the low and high setpoints. The value at which the relay will reset is controlled by the $H \square SE$ function.

Overlapping alarms - if the **H**, **Sh** value is set lower than the **Lo** value then the alarm will activate in the band between the two values.

If the display has annunciator leds for the relay then the annunciator will initially flash in alarm condition, if the alarm is acknowledged by pressing the 🖬 button (where fitted) or has been acknowledged by a P button or remote input operation the annunciator will be solidly lit until the display moves out of alarm condition.

Example:

If H, 9h under AL is set to 100 then relay 1 will activate when the display value is 100 or higher.

Note if the high alarm value is set lower than the low alarm value the relay will activate between the two i.e. activate in the band between the two values.

LD5RTTMAN-1.6-0

5.46 Alarm relay low setpoint

Section:	AL I to AL B
Display:	Lo
Range:	Any display value or DFF
Default Value:	OFF
Default Access Level	2
Function number	40 10 to 40 17

Displays and sets the low setpoint value for the designated alarm relay. Use this low setpoint function if a relay operation is required when the display value becomes equal to or less than the low setpoint value.

To set the low alarm value press \square and when you see a digit of the value flash use the \square or \square push buttons to set the required value then press \square to accept this selection.

The low alarm setpoint may be disabled by pressing the \square and \square push buttons simultaneously. When the alarm is disabled the display will indicate $\square F F$. If the relay is allocated both a low and high setpoint then the relay will activate when the value displayed moves outside the band set by the low and high setpoints. The value at which the relay will reset is controlled by the Hysteresis function.

If the display has annunciator leds for the relay then the annunciator will initially flash in alarm condition, if the alarm is acknowledged by pressing the \Box button (where fitted) or has been acknowledged by a \Box button or remote input operation the annunciator will be solidly lit until the display moves out of alarm condition.

Example:

5.47 Alarm relay hysteresis (deadband)

Section:	RL I to RL B
Display:	H42F
Range:	0 to 65535
Default Value:	10
Default Access Level	3
Function number	4020 to 4021

Displays and sets the alarm relay hysteresis limit for the selected channel. To set a relay hysteresis value go to the HYSE function and use the \square or \square push buttons to set the value required then press \square to accept this value. The hysteresis value is common to Fault, Low and High setpoint values. The hysteresis value may be used to prevent too frequent operation of the relay when the measured value is rising and falling around setpoint value.

The hysteresis setting operates as follows: For the ascending alarms, once the alarm is activated the input must fall

below the setpoint value minus the hysteresis value to reset the alarm. e.g. if **RL 3 H, 9** is to **SO.O** and **RL 3 HYSE** is set to **3.O** then the channel 4 alarm will activate once the display value goes to **SO.O** or above and will reset when the display value goes below **47.O** i.e. at **46.9** or below.

For the descending alarms, once the alarm is activated the input must rise above the setpoint value plus the hysteresis value to reset the alarm. e.g. if **RL2H**, **Sh** is to **D.D** and **RL2HYSE** is set to **ID.D** then the channel 5 alarm will activate when the display value falls below **D.D** and will reset when the display value goes above **ID.D** i.e at **ID.1** or above. The hysteresis units are expressed in displayed engineering units.

5.48 Alarm relay trip time

Section:	AL 1 to AL B
Display:	Er, P
Range:	0 to 6553.5 secs
Default Value:	0.0
Default Access Level	3
Function number	4040 to 4047

Displays and sets the alarm trip time in seconds. The trip time is common for both alarm high and low setpoint values. The trip time provides a time delay before the alarm relay will activate when an alarm condition is present. The alarm condition must be present continuously for the whole trip time period before the alarm will activate. If the input moves out of alarm condition during this period the timer will reset and the full time delay will be restored. This trip time delay is useful for preventing an alarm trip due to short non critical deviations from setpoint. The trip time is selectable over **0.0** to **5553.5** seconds.

To set the trip time value go to the $\not \leftarrow \not P$ function, press \blacksquare and when you see a digit of the value flash use the \square or \square push buttons to set the required value then press \blacksquare to accept this selection.

Example: If $\mathbf{E}_{\mathbf{r}}$, \mathbf{P} is set to **5.0** seconds then the display must indicate an alarm value for a full 5 seconds before the relay will activate.

5.49 Alarm relay reset time

Section:	AL 1 to AL 8
Display:	ΓSE
Range:	0 to 6553.5 secs
Default Value:	0.0
Default Access Level	3
Function number	4050 to 4057

Displays and sets the alarm reset delay time in seconds. The reset time is common for both alarm high and low setpoint values. With the alarm condition is removed the alarm relay will stay in its alarm condition for the time selected as the reset time. If the input moves back into alarm condition during this period the timer will reset and the full time delay will be restored. The reset time is selectable over **D.D** to **5553.5** seconds.

To set the reset time value go to the Γ **5** \models function, press **a** and when you see a digit of the value flash use the **a** or **b** push buttons to set the required value then press **b** to accept this selection.

Example: If *f* **5** is set to *i***0**.**0** seconds then the resetting of alarm relay will be delayed by 10 seconds.

5.50 Relay selection

Section:	AL 1 to ALB
Display:	rlys
Range:	On or OFF
Default Value:	OFF
Default Access Level	ч
Function number	4330 to 4337

Allows a relay to be allocated to an alarm. For example if a high alarm value has been selected at the **RL 1H**, **Sh** function this alarm could be allocated to relay 3 by selecting **FLY30** at this function. Press the **B** button to enter this function then use the **D** or **D** pushbuttons to choose the required relay then press the **B** button to toggle to **D** or **DFF** as required. When relay PI control is used alarm 1 is dedicated to relay 1 and alarm 2 is dedicated to relay 2 so no selection choice will appear when set for PI control.

5.51 Alarm trailing or setpoint mode

Section:	AL I to ALB
Display:	EL
Range:	SEE.P, EL 1, EL 2, EL 3, EL 4, EL 5, EL 6, EL 7
Default Value:	SEL.P
Default Access Level	ч
Function number	4060 to 4067

Each alarm, except alarm 1, may be programmed to operate with an independent setpoint value (SEE.P selected) or may be linked to operate at a fixed difference to one or more other alarms, known as trailing operation. The operation is as follows: The operation of each alarm is selectable by selecting, for example, (Alarm 4) RL 4 SEE.P = alarm 4 normal setpoint or RL 4 EL I = alarm 4 trailing alarm 1 or RL 4 EL Z = alarm 4 trailing alarm 2 or RL 4 EL J = alarm 4 trailing relay 3. For trailing set points the setpoint value is entered as the difference from the setpoint being trailed.

If the trailing setpoint is to operate ahead of the prime setpoint then the value is entered as a positive number and if operating behind the prime setpoint then the value is entered as a negative number.

Notes: If a high ($RL \times h$, Sh) trailing alarm is set then this will only follow the high alarm setting of the alarm it is set to trail. Similarly a low alarm will only trail a low alarm of the alarm it is set to trail. It is possible to use trailing alarms with both high and low alarm settings used for each relay.

Example 1 - High alarm: With alarm 2 set to trail alarm 1, if **RL** *i* **H**, **Sh** is set to *i***OOO** and **RL 2 H**, **Sh** is set to **SO** then alarm 1 will activate at *i***OOO** and alarm 2 will activate at *i***OSO** (i.e. 1000 + 50). If alarm 2 had been set at **-SO** then alarm 2 would activate at **qSO** (i.e. 1000 - 50) or above.

Example 2 - Low alarm: With alarm 2 set to trail alarm 1, if **RL 1Lo** is set to **500** and **RL2Lo** is set to **200** then alarm 1 will activate at **500** and alarm 2 will activate at **800** (i.e. 600 + 200). If alarm 2 had been set at **-200** then alarm 2 would activate at **400** (i.e. 600 - 200) or below.

5.52 Alarm relay latching operation

Section:	AL I to AL 8
Display:	Ltch
Range:	Ruto, Ltch, R.b, L.b
Default Value:	Ruto
Default Access Level	ч
Function number	ררו א סרו א

Allows selection of alarm latching operation. If set to Ruto the alarm relays will not latch i.e. they will automati-

cally reset when the display moves out of alarm condition. If set to **LRECH** the relay will latch and will not reset until the display value is out of alarm condition and either the **b**utton is pressed to clear the latch condition or if power is removed. The relay hysteresis, trip time and reset time settings still apply to latching relays.

In latching mode the alarm annunciator (if annunciators are fitted) will flash when the display goes into alarm condition. If the display goes out of alarm condition without being acknowledged the flashing period will change to give a longer "off" time. If the alarm is acknowledged by pressing the 🖬 button then the annunciator will change from flashing to solidly lit. Once the alarm has been acknowledged the relay will be free to reset once the display value moves out of alarm condition.

5.53 Alarm relay normally open/closed

Section:	FL I to FL 8
Display:	LLA
Range:	n.o, n.c
Default Value:	n.o
Default Access Level	ч
Function number	4030 to 4037

Displays and sets the setpoint alarm relay x action to normally open (de-energised) or normally closed (energised), when no alarm condition is present. Since the relay will always open when power is removed a normally closed alarm is often used to provide a power failure alarm indication. To set the alarm relay for normally open or closed go to the ΓL ito $\Gamma L B \Gamma L J$ function and use the \square or \square push buttons to set the required operation then press \square to accept this selection. Example:

If set to **R** in. **a** alarm relay 1 will be open circuit when the display is outside alarm condition and will be closed (short circuit across COM and N/O terminals) when the display is in alarm condition.

5.54 Relay acknowledge

Section:	FL I to FLB
Display:	Rch
Range:	OFF or ON
Default Value:	OFF
Default Access Level	ч
Function number	4320 to 4327

If an alarm has been set to latching operation it will not reset until the reading is outside its alarm condition and the operator has acknowledged the alarm by pressing the \Box button (where fitted) or when programmed for this purpose using a \Box button or remote input to acknowledge the alarm. If the **R** ϵ **F** is set to **D** Π the operator can acknowledge the alarm whilst still in alarm condition allowing the alarm to reset automatically when the reading moves outside the alarm condition.

5.55 Temperature alarm relay Boolean logic operation

Section:	FL I to FL 8
Display:	bool
Range:	Or, And
Default Value:	Or
Default Access Level	ч
Function number	43 10 to 43 17

This function allows a Boolean logic AND ($\mathbf{R} \mathbf{rd}$) or OR ($\mathbf{C} \mathbf{r}$) function to be applied to temperature alarms. If two or more alarms use the same relay and that relay is set to operate as an OR operation then this effectively puts the

alarms in parallel. If two or more alarms use the same relay that relay is set to operate on an AND operation then this effectively puts the alarms in series.

Examples: 1. If alarms 1, 2 and 3 all use relay 1 and relay 1 is set for $\Box r$ operation then relay 1 will activate if the display value for the selected channels for these alarms causes either alarm 1 or alarm 2 or alarm 3 to go into alarm condition. i.e. relay 1 will activate if any of the alarms is in alarm condition.

2. If alarms 1, 2 and 3 all use relay 1 and relay 1 is set for **Rnd** operation then relay 1 will activate if the display value for the selected channels for these alarms causes alarm 1 and alarm 2 and alarm 3 to go into alarm condition. i.e. all 3 alarms must be in alarm condition for relay 1 to activate.

5.56 Alarm on time

Section:	RE 1 to RE32
Display:	0.
Range:	O to 1439 mins
Default Value:	n/a
Default Access Level	2
Function number	7840 to 785F

Up to 32 alarm times can be set To set a time alarm a start time, duration and the days on which the alarms are to operate must be set, also the relay or relays to be activated during an alarm must be set. This function is used to set the time at which the alarm is to begin. The **duf** function which follows sets the length of time the alarm is active. The **dRy** function sets which day or days the alarm is to operate on and the **FLY** function allows selection of relay or relays to be activated.

5.57 Alarm duration

Section:	AF 1 to BF35
Display:	aur
Range:	G to Maximum display value secs
Default Value:	n/a
Default Access Level	2
Function number	7880 to 789F

The alarm duration is the length of time from the \mathbf{D} time for which the chosen relay or relays will activate. The time can be set in units of minutes or seconds with the selection being made at the **RL** UN E function.

5.58 Alarm days

Section:	AF 1 to AF35
Display:	98A
Range:	ňon, ŁuE, ũEd, Łhu, Fri , SAŁ, Sun
Default Value:	n/a
Default Access Level	2
Function number	78CO to 78dF

For each alarm the days of the week on which the alarm will operate is set at this function. Use the \square or \square pushbutton to select the day required then press the \square button to toggle between $\square FF$ (alarm does not operate on this day) and $\square \cap$ (alarm does operate on this day). Continue using the \square or \square pushbutton to choose more days if required and when finished press \square when the display shows $E \cap d$ to exit this section.

5.59 Alarm relays

Section:	AF 1 to BF35
Display:	LLA
Range:	FLY. 1, FLY.2, FLY.3, FLY.4
Default Value:	n/a
Default Access Level	2
Function number	7900 to 79 IF

For each alarm the relay or relays on which the alarm will operate is set at this function. Use the \square or \square pushbutton to select the relay required then press the \square button to toggle between $\square FF$ (alarm does not operate this relay) and $\square \cap$ (alarm does operate this relay). Continue using the \square or \square pushbutton to choose more relays if required and when finished press \square when the display shows $E \cap d$ to exit this section.

5.60 Remote input alarm enable

Section:	AF 1 to AF35
Display:	a.i N
Range:	d.) N. I, d.) N.2, d.) N.3, d.) N.4
Default Value:	n/a
Default Access Level	2
Function number	7940 to 795F

For each alarm there is the option of requiring an extra enabling input form one of the four remote (digital) inputs on the main board. Use the \square or \square pushbutton to select the digital input required then press the \square button to toggle between $\square F F$ (alarm does not require this input) and $\square \cap$ (alarm does require this input). Continue using the \square or \square pushbutton to choose more digital inputs if required and when finished press \square when the display shows $E \cap d$ to exit this section. For example if an alarm has $d.I \cap \square 3$ set to $\square \cap$ then the alarm will only operate if digital input 3 is active when the alarm on time is reached. If the remote input becomes active or inactive during the alarm period it can cause the relays selected to activate and de activate in response. Ensure that the remote input functions in the $f.I \cap P$ section do not conflict with these settings as the remote input terminals can also be set to operate from remote input function selection i.e. do not select 2 operations for the same remote input.

5.61 Automatic display brightness

Section:	di SP
Display:	br9t Ruto
Range:	OFF or ON
Default Value:	0~
Default Access Level	2
Function number	22FC

Automatic display brightness adjustment. Applies only to instruments with light sensor fitted. The automatic brightness adjustment uses the optional light sensor to gauge the required brightness level for the environment. The high and low brightness limits are set at the Ruto H, Sh and Ruto Lo functions described below.

5.62 Display brightness

Section:	di SP
Display:	br 9t
Range:	; to 53
Default Value:	63
Default Access Level	2
Function number	22Fb

Allows manual adjustment of the display brightness from 1 (lowest brightness) to 63 (highest brightness).

5.63 Dimmed display brightness

Section:	di SP
Display:	dul l
Range:	0 to 63
Default Value:	7
Default Access Level	2
Function number	2352

Displays and sets the manually set level for remote input brightness switching. When a remote input is set to d_{u} ; the remote input can be used to switch between the display brightness level set by the **brSE** function and the dimmed display brightness set by the **du**; function. The display dull level is selectable from **C** to **53**, where **D** = lowest intensity and **53** = highest intensity. This function is useful in reducing glare when the display needs to be viewed in both light and dark ambient light levels.

5.64 Auto display brightness high level

Section:	di SP
Display:	Ruto H, 9h
Range:	;5 to 53
Default Value:	63
Default Access Level	2
Function number	22E8

Automatic brightness high level - seen only when **br9t Ruto** is set to **On**. The high brightness level sets the maximum brightness which the automatic brightness control can achieve with 64 being the highest intensity.

5.65 Auto display brightness low level

Section:	di SP
Display:	Auto Lo
Range:	; to 53
Default Value:	7
Default Access Level	2
Function number	22EP

Automatic brightness low level - seen only when **br9t Ruto** is set to **DR**. The low brightness level sets the minimum brightness which the automatic brightness control can achieve with **54** being the highest intensity and **D** being the lowest intensity.

5.66 Display dim timer

Section:	di SP
Display:	d.OFF
Range:	G to Maximum display value mins
Default Value:	0
Default Access Level	2
Function number	2266

This function can be used to set a timer in minutes for automatic dimming of the display to reduce current consumption. When set to \mathbf{D} the timer is disabled and there is no automatic dimming. When set to a value in minutes the display will automatically dim with the timer starting from the last time a pushbutton on the display was pressed. The timer operates on an accuracy of +/- 1 minute so timing is approximate. When the display dims it dims to the brightness level set at the **du**; ; function. Note this timer is independent from the master unit **d.DFF** timer i.e. the dulling operation for the slave unit cannot be controlled by the master unit. The normal brightness will resume and the timer will be reset when any of the slave displays pushbuttons is pressed.

5.67 Front P button operation mode

Section:	Г.) ПР
Display:	P.but
Range:	NONE, P.H. , P.Lo, HLo, AL.Ac
Default Value:	NONE
Default Access Level	ч
Function number	4720

5.68 Remote input 1 operation mode

Section:	Г.) ПР
Display:	Г.) П. (
Range:	NONE, P.HI d, d.HI d, P.H., P.Lo, H. Lo, AL.Ac, ACCS, P.Lut, F.Lut,
	U.but, d.but, dul I , b.I nc, b.dEc
Default Value:	NONE
Default Access Level	4
Function number	4721

The remote inputs 1 to 4 can be set to be used for various operations as described below. Ensure that the remote input settings in the **RE** 1 to **RE32** *d.*: Π section do not conflict with the settings in this section as the remote input terminals can also be set to enable/disable the time alarms i.e. do not select 2 operations for the same remote input.

- **NORE** If this option is selected then remote input 1 will have no function.
- **P.Ho:** *d* not applicable to this software version.
- **d.Ho**: **d** not applicable to this software version.
- **P.H.** not applicable to this software version.
- **P.Lo** not applicable to this software version.
- H. Lo not applicable to this software version.

- **R**: **R**C alarm acknowledge. Allows the remote input to be used to acknowledge a temperature alarm. If the alarm is set for latching operation the acknowledgment will allow the alarm and any relays allocated to that alarm to reset when the alarm condition is removed. If the alarm is set for automatic reset the acknowledgment will allow the alarm and any relays allocated to that alarm to reset even if the alarm condition still exists this could typically be used to silence a siren controlled by a relay even though the alarm condition is still present. The acknowledge will operate on all alarms programmed to require acknowledgement.
- **REES** remote input access. Allows the remote input to be used for setup function access control purposes. Refer to the "Accessing setup functions" in the Introduction chapter.
- **P.but** allows the selected remote input to act as the **P** pushbutton.
- F.but allows the selected remote input to act as the 🖬 pushbutton.
- U.but allows the selected remote input to act as the **D** pushbutton.
- d.but allows the selected remote input to act as the D pushbutton.
- **du**; : remote dulling of the display. When activated the display brightness will fall to the level set by the **du**; : level. This is generally used to reduce current consumption in battery powered applications or for switching between day and night brightness levels.
- b.! nc display brightness increment. Allows the selected remote input to be used to increment the display brightness. If no other remote input is set to b.dEc then once maximum brightness is reached the brightness will start again from lowest brightness and increment. If auto brightness is turned on then when powered up the display will go to its auto brightness level and can be adjusted from there. If auto brightness is turned off then the display will remember its last brightness setting on power up. The maximum brightness reached will be the brightness level set by the br St function is auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned on.
- b.dEc display brightness decrement. Allows the selected remote input to be used to decrement the display brightness. If no other remote input is set to b.! nc then once minimum brightness is reached the brightness will start again from lowest highest brightness and decrement. If auto brightness is turned on then when powered up the display will go to its auto brightness level and can be adjusted from there. If auto brightness is turned off then the display will remember its last brightness setting on power up. The maximum brightness reached will be the brightness level set by the br St function is auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness reached will be the brightness level set by the duil function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the duil function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St function if auto brightness is turned off or the brightness level set by the Br St fu

5.69 Remote input 2 operation mode

Section:	r.) np
Display:	r.) n.2
Range:	NONE, P.HI d, d.HI d, P.H., P.Lo, H. Lo, AL.Ac, ACCS, P.Lut, F.Lut,
	U.but, d.but, dul I , b.I nc, b.dEc
Default Value:	NONE
Default Access Level	ч
Function number	4722

Remote input 2 functions. Same choices as *F*. *I PF*. *I* **apply**.

5.70 Remote input 3 operation mode

Section:	E,LOP
Display:	Г.) П.Э
Range:	NONE, P.H. d, d.H. d, P.H. , P.Lo, H. Lo, RL.Rc, REES, P.Lut, F.Lut,
	U.but, d.but, dul I , b.I nc, b.dEc
Default Value:	NONE
Default Access Level	ч
Function number	4723

Remote input 3 functions. Same choices as *C*. *I P C*. *I* apply.

5.71 Remote input 4 operation mode

Section:	r,i np
Display:	Г.) П.Ч
Range:	NONE, P.H. d, d.H. d, P.H. , P.Lo, H. Lo, RL.Ac, REES, P.Lut, F.Lut,
	U.but, d.but, dul I , b.I nc, b.dEc
Default Value:	NONE
Default Access Level	4
Function number	4724

Remote input 4 functions. Same choices as *C*. *I PC*. *I* apply.

5.72 Remote input (digital inputs) 1 pull up/down operation

Section:	d., n
Display:	d., n. (P.UP
Range:	OPEn, H. Sh, Lo
Default Value:	H, 9h
Default Access Level	ч
Function number	4850

This function sets the voltage level present on the digital input terminal. If set to H, Gh a 5VDC voltage will be placed on the input terminal via a pull up resistor and a short circuit to ground or voltage below 2V will be required to activate the remote input. If set to $L \circ$ then the input terminal will be connected to ground via a pull down resistor and a voltage between 5 and 24VDC will be required at the input to activate the remote input. If set to $GPE \circ$ then both the pull up and pull down resistors will be taken out of circuit and the terminal voltage will be "floating", this choice can be used when input devices are used which may supply their own voltage to the digital input terminal, maximum acceptable voltage is 24VDC.

5.73 Remote input (digital inputs) 1 input level

Section:	d.i n
Display:	d. n. l Lul
Range:	H, Sh, Lo
Default Value:	Lo
Default Access Level	ч
Function number	4858

This function sets the input level required to activate the remote input. A setting of Lo means that a low voltage usually 0V or a short circuit to ground will activate the remote input. A setting of H, G means that a voltage of 5 to 24V is required to activate the remote input.

5.74 Remote input (digital inputs) 2 pull up/down operation

Section:	d., n
Display:	d., n.2 P.UP
Range:	OPEn, H. Sh, Lo
Default Value:	H, 9h
Default Access Level	ч
Function number	485 (

This function sets the voltage level present on the digital input terminal. If set to H, Gh a 5VDC voltage will be placed on the input terminal via a pull up resistor and a short circuit to ground or voltage below 2V will be required to activate the remote input. If set to $L \circ$ then the input terminal will be connected to ground via a pull down resistor and a voltage between 5 and 24VDC will be required at the input to activate the remote input. If set to $GPE \circ$ then both the pull up and pull down resistors will be taken out of circuit and the terminal voltage will be "floating", this choice can be used when input devices are used which may supply their own voltage to the digital input terminal, maximum acceptable voltage is 24VDC.

5.75 Remote input (digital inputs) 2 input level

d., n
d. n.2 Lui
H, 9h, Lo
Lo
ч
4859

This function sets the input level required to activate the remote input. A setting of **Lo** means that a low voltage usually 0V or a short circuit to ground will activate the remote input. A setting of **H**, **Sh** means that a voltage of 5 to 24V is required to activate the remote input.

5.76 Remote input (digital inputs) 3 pull up/down operation

Section:	d., n
Display:	d., n.3 P.UP
Range:	OPEn, Hr Sh, Lo
Default Value:	H, 9h
Default Access Level	ч
Function number	4852

This function sets the voltage level present on the digital input terminal. If set to H, Gh a 5VDC voltage will be placed on the input terminal via a pull up resistor and a short circuit to ground or voltage below 2V will be required to activate the remote input. If set to $L \circ$ then the input terminal will be connected to ground via a pull down resistor and a voltage between 5 and 24VDC will be required at the input to activate the remote input. If set to $GPE \circ$ then both the pull up and pull down resistors will be taken out of circuit and the terminal voltage will be "floating", this choice can be used when input devices are used which may supply their own voltage to the digital input terminal, maximum acceptable voltage is 24VDC.

5.77 Remote input (digital inputs) 3 input level

Section:	d., n
Display:	d. n. 3 Lui
Range:	H, 9h, Lo
Default Value:	Lo
Default Access Level	ч
Function number	YASA

This function sets the input level required to activate the remote input. A setting of Lo means that a low voltage usually 0V or a short circuit to ground will activate the remote input. A setting of H, Gh means that a voltage of 5 to 24V is required to activate the remote input.

5.78 Remote input (digital inputs) 4 pull up/down operation

Section:	d., n
Display:	d., n.Y. P.UP
Range:	OPEn, Hr Sh, Lo
Default Value:	H, 9h
Default Access Level	ч
Function number	4853

This function sets the voltage level present on the digital input terminal. If set to H, Gh a 5VDC voltage will be placed on the input terminal via a pull up resistor and a short circuit to ground or voltage below 2V will be required to activate the remote input. If set to $L \circ$ then the input terminal will be connected to ground via a pull down resistor and a voltage between 5 and 24VDC will be required at the input to activate the remote input. If set to $GPE \circ$ then both the pull up and pull down resistors will be taken out of circuit and the terminal voltage will be "floating", this choice can be used when input devices are used which may supply their own voltage to the digital input terminal, maximum acceptable voltage is 24VDC.

5.79 Remote input (digital inputs) 4 input level

Section:	d., n
Display:	d. n. Y Lui
Range:	H, Sh, Lo
Default Value:	Lo
Default Access Level	ч
Function number	4856

This function sets the input level required to activate the remote input. A setting of **Lo** means that a low voltage usually 0V or a short circuit to ground will activate the remote input. A setting of **H**, **G**, means that a voltage of 5 to 24V is required to activate the remote input.

5.80 Serial output operation mode

Section:	SErl
Display:	OPEr
Range:	NONE, Cont. Poll, R.bus, d. SP. A.bus, UPdt
Default Value:	NONE
Default Access Level	ч
Function number	4480

Allows selection of the operating mode to be used for RS232 or RS485 serial output communications. See the "LD5/LE5 Series Large Digit Display Output Addendum" for more information and wiring details of optional

isolated serial communications.

Choices are:

- **DonE** no serial comms. required.
- **Cont** sends ASCII form of displayed time. The time will be preceded by a start of text character and will terminate with a carriage return e.g. <STX>15:16<CR> for a displayed time of 16 minutes past 3 pm.
- **Po:** *i* controlled by computer or PLC etc. as host. The host sends command via RS232/485 and instrument responds as requested. The poll commands for the clock are:

<STX>PA<CR> or <STX>SA<CR> or <STX>TA<CR> where:

 \langle STX \rangle is the start of text character and \langle CR \rangle is a carriage return character.

A is the unit ASCII address set by the **Unit Rddr** function offset by 32 decimal. e.g. ASCII code 33 decimal is the exclamation mark ! and this would be address 1.

P is the primary display value i.e. the time displayed. The returned value will be in the same format as the continuous mode above but will include a copy of the command and address e.g. $\langle STX \rangle P! 15:16 \langle CR \rangle$ for a displayed time of 16 minutes past 3 pm (unit address 1).

S is the secondary value which is the number of seconds and tenths of second since midnight e.g. $\langle STX \rangle S!$ 55108.1 $\langle CR \rangle$

T is the tertiary value which is the date in year-month-day format e.g. <STX>T! 2020-10-23<CR>

- **R.b.5** this is a special communications mode used with Windows compatible PC download software. This mode must be used if communications via USB is used. Refer to the user manual supplied with this optional software.
- **d**: **5P** sends image data from the display without conversion to ASCII. This mode should only be used when the serial output is connected to another display from the same manufacturer.
- Ā.bu5 output Modbus RTU (RS232/RS485) is used. To poll for the display value via Modbus use address 0x1000 and 0x1001 hex (registers 44095 and 44096 decimal), Modbus function 3.
- UPdE this mode can be used in master/slave configurations. When used in this configuration the master clock must be set for UPdE and all the slave clocks must be set to Po!!. The master clock will send its time via serial comms to the slave clocks every 60 seconds. As an example the format sent for a time of 15:44 with no hundredths displayed would be <ESC>T154400<CR>.

5.81 Serial baud rate

Section:	SEr;
Display:	bRud
Range:	1200, 2400, 4800, 9600, 19.2, 38.4, 57.6, 115.2
Default Value:	9600
Default Access Level	ч
Function number	4484

Allows the baud rate to be set for serial communications. Choices are:

1200, 2400, 4800, 9600, 19.2, 38.4, 57.6, 115.2

Baud rates above 9600 are in k Baud.

5.82 Serial parity

Section:	SEri
Display:	Prty
Range:	8 <i>0</i> , 8E, 80, 7E, 70
Default Value:	80
Default Access Level	ч
Function number	4482

Allows selection of the parity check. The parity check selected should match that of the device it is being communicated with. The choices are 8 bit with no parity, even parity or odd parity or 7 bit with even or odd parity.

5.83 Serial address

Section:	SEri
Display:	Unit Rddr
Range:	1 to 127
Default Value:	1
Default Access Level	ч
Function number	0430

Allows selection of the unit address when the operation is set for **POLL** mode. The unit address is offset by 32(DECIMAL) to avoid clashing with ACSII special characters, therefore 42 (DECIMAL) or 2A (HEX) would be unit address 10.

5.84 Send error display

SErl
Err d. SP
OFF or ON
0-
ч
4483

When set to **Dn** the selected any error display will be sent via the serial comms. to any connected receiving device or slave display. When sent to **DFF** the error display will not be sent.

5.85 Easy access mode

Section:	RCCES
Display:	EASY LEUL
Range:	NONE, 1, 2, 3, 4, 5, 6, CAL
Default Value:	папе
Default Access Level	S.CAL
Function number	0000

Allows choice of the access level available when using the easy access method. For example if this function is set to **3** then functions with levels 1, 2 and 3 can be viewed and changed when access to setup functions is made using this method. To access setup functions using the easy access method press and hold the **5** button until the message **FUNC** is seen followed by the first function message, this should take approximately 3 seconds. If the message **FUNC End** or no response is seen at this point it means that the access level has been set to **Rone** and that access to setup functions has been refused.

5.86 Remote input access mode

RCCES
FJ NP LEUL
NONE, 1, 2, 3, 4, 5, 6, CAL
попе
S.CAL
060 1

This function allows choice of the access level available when using the remote input access method. To access setup functions using the remote input access method one of the remote inputs must be set to **REESS** and the chosen remote input must be shorted to ground. Press and hold the **G** button until the message **FUNE** is seen followed by the first function message, this should take approximately 3 seconds. If the message **FUNE End** is seen at this point it means that the access level has been set to **ReeES**.

5.87 PIN code 1

RCCES
USF. 1 Pro
0 to 65535
0
S.C.AL
0009

This function allows choice of the PIN code to be used for PIN code input access method. Associated with the PIN is an access level (see P, n. (Rcc5)). If a PIN is not required leave the setting at G. If a PIN other than 0 is chosen then this PIN must be entered to gain access to the the selected level.

To access setup functions using the PIN code input access method press then release the \square button then within 2 seconds press the \square and \square buttons at the same time. The message *Func* is seen followed by the message *Code*. If the message *Func* is seen at this point it means that the access level has been set to *Rooe*. Use the \square and \square buttons to enter the PIN then press \square to accept the PIN and proceed to the setup functions.

5.88 PIN code 1 access level

Section:	RCCES
Display:	USF.I LEUL
Range:	NONE, 1, 2, 3, 4, 5, 6, CAL
Default Value:	ΠΟΠΕ
Default Access Level	S.CAL
Function number	0002

This function allows choice of the access level available when using the PIN code 1 input access method. To access setup functions using the PIN code 1 input access method press and hold the **b** button until the message **FUNC** is seen followed by the first function message, this should take approximately 3 seconds. If the message **FUNC End** is seen at this point it means that the access level has been set to **NonE**.

5.89 PIN code 2

Section:	RCCES
Display:	USF.2 Pro
Range:	0 to 65535
Default Value:	0
Default Access Level	S.C.AL
Function number	OCOR

This function allows choice of a second PIN code to be used for PIN code input access method. Associated with the PIN is an access level (see P, a.2Rcc5). The second PIN would normally be used to allow a second person to have a higher access to setup functions via a different PIN. If a second PIN is not required leave the setting at **G**. If a PIN other than 0 is chosen then this PIN must be entered to gain access to the the selected level.

To access setup functions using the PIN code input access method press then release the \Box button then within 2 seconds press the \Box and \Box buttons at the same time. The message *FURC* is seen followed by the message *LodE*. If the message *FURC* **End** is seen at this point it means that the access level has been set to *RonE*. Use the \Box and \Box buttons to enter the PIN then press \Box to accept the PIN and proceed to the setup functions. Ony one *LodE* message will appear even though there can be a second PIN. If the number entered into the *LodE* at this point is the PIN code 1 number then access will be granted to the functions allocated to the first PIN. If the PIN code 2 value is entered then access will be granted to the functions allocated to the second PIN.

5.90 PIN code 2 access level

Section:	ACCES
Display:	USF.2 LEUL
Range:	NONE, 1, 2, 3, 4, 5, 6, CA
Default Value:	ΠΟΠΕ
Default Access Level	S.CAL
Function number	0C03

This function allows choice of the access level available when using the PIN code 2 input access method. To access setup functions using the PIN code 2 input access method press and hold the **b** button until the message **FUNC** is seen followed by the first function message, this should take approximately 3 seconds. If the message **FUNC End** is seen at this point it means that the access level has been set to **Rone**.

5.91 User assignable access 1 function number

Section:	RECES
Display:	Fn. 1 EadE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.AL
Function number	OC 10

In addition to being assigned an access level each setup function is assigned an individual function number. This functions and the ones which follow ($F \cap 2CodE$ etc.) can be used to alter the access level for particular functions. For example if the user wishes to change the access level of the channel 1 display units (function number 43A0) from level 5 to level 1 then the value **43RO** would be entered at this function and the value **3** would be entered at the function which follows. This would then enable the channel 1 display unit functions to be accessed at the lowest access level.

5.92 User assignable access 1 level value

Section:	ACCES
Display:	FA. 1 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, 5.CAL
Default Value:	dF; E
Default Access Level	S.CAL
Function number	0640

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.93 User assignable access 2 function number

Section:	RCCES
Display:	Fn.2 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.RL
Function number	DC 11

This function allows as second function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.94 User assignable access 2 level value

Section:	RCCES
Display:	FA.2 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, S.CAL
Default Value:	dFI E
Default Access Level	S.CAL
Function number	0641

Allows a new access level for the function with the number set in the function to be chosen. If dF; E is chosen then the level reverts back to the original default level.

5.95 User assignable access 3 function number

Section:	RCCES
Display:	Fn.3 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.RL
Function number	00 12

This function allows as third function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.96 User assignable access 3 level value

Section:	RCCES
Display:	FA.3 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, 5.CAL
Default Value:	dF; E
Default Access Level	S.CAL
Function number	0645

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.97 User assignable access 4 function number

Section:	RCCES
Display:	Fn.4 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.RL
Function number	OC 13

This function allows as fourth function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.98 User assignable access 4 level value

Section:	RCCES
Display:	FA.4 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, S.CAL
Default Value:	dF; E
Default Access Level	S.CAL
Function number	0643

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.99 User assignable access 5 function number

Section:	RCCES
Display:	Fn.5 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.AL
Function number	DC 14

This function allows as third function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.100 User assignable access 5 level value

Section:	RCCES
Display:	FA.5 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, 5.CAL
Default Value:	dFI E
Default Access Level	S.CAL
Function number	0644

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.101 User assignable access 6 function number

Section:	RECES
Display:	Fn.6 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.RL
Function number	OC 15

This function allows as third function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.102 User assignable access 6 level value

Section:	RCCES
Display:	FA.6 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, S.CAL
Default Value:	dFI E
Default Access Level	S.CAL
Function number	0645

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.103 User assignable access 7 function number

Section:	RCCES
Display:	Fn.7 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.AL
Function number	OC 16

This function allows as third function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.104 User assignable access 7 level value

Section:	RCCES
Display:	FA.7 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, 5.CAL
Default Value:	dF; E
Default Access Level	S.CAL
Function number	0646

Allows a new access level for the function with the number set in the function to be chosen. If dF: E is chosen then the level reverts back to the original default level.

5.105 User assignable access 8 function number

Section:	RCCES
Display:	Fn.8 CodE
Range:	DDDD to FFFF hex.
Default Value:	0000
Default Access Level	S.C.AL
Function number	סכ וח

This function allows as fourth function access change and operates in the same manner as . Enter the function number required and then enter the new access level at the function which follows.

5.106 User assignable access 8 level value

Section:	RCCES
Display:	FA.8 LEUL
Range:	dFI E, 1, 2, 3, 4, 5, 6, CAL, S.CAL
Default Value:	dFI E
Default Access Level	S.CAL
Function number	0647

Allows a new access level for the function with the number set in the function to be chosen. If dF; E is chosen then the level reverts back to the original default level.

6 Technical specifications

Function:	Real time clock plus temperature display
Clock syncronisation: Format: Display:	50Hz, 60Hz or internal clock reference 12 hour or 24 hour 6 digit 20mm red LED or 6 digit 38mm red LED or 5 digit 45mm red LED or 4 digit 57mm red LED or 58mm red LED or 4 or 6 digit 100mm red LED or 4 digit 200mm red LED type High contrast versions 38mm 6 digit, 58mm 4 digit, 100mm 4 or 6 digit and 200mm 4 digit available in red, green, white or amber led.
Memory Retention:	Battery backed time memory
Temperature sensor:	Pt100 RTD or LM335 or 4-20mA or none 0-10VDC to special order
Temperature meas. range:	-9 to 99°C (or -9.9 to 99.9°C)
Ambient Temperature:	-9 to 60°C
Humidity:	5 to 95% non condensing
Power supply:	100 and 200mm LED: AC 240 or 110V selectable, 50/60Hz or AC 48/42/32/24 selectable, 50/60Hz or DC isolated wide range 12 to 24V. 20mm, 38mm, 45mm, 57 or 58mm LED: AC 240/110V 50/60Hz or AC 24 to 48V 50/60Hz or DC 12 to 48V isolated or DC 24V non isolated Supply type is factory configured
DC output supply: Output (standard):	5VDC or 24VDC(unregulated) @ 50mA max. 4 x relays, 1 x Form C, 3 x Form A rated 5A resistive. Programmable N.O. or N.C.

Optional outputs - some options below are available in combination

Extra relays:	4 extra relays, form A
Serial communications:	RS485 isolated 8 bit (ASCII or Modbus RTU functions 1 and 3)
	RS232 serial comms. 8 bit (ASCII or Modbus RTU functions 1 and 3)
	Ethernet, can be used with Modbus TCP

Physical characteristics - see chapter 2

7 Guarantee and service

The product supplied with this manual is guaranteed against faulty workmanship for a period of two years from the date of dispatch.

Our obligation assumed under this guarantee is limited to the replacement of parts which, by our examination, are proved to be defective and have not been misused, carelessly handled, defaced or damaged due to incorrect installation. This guarantee is VOID where the unit has been opened, tampered with or if repairs have been made or attempted by anyone except an authorised representative of the manufacturing company.

Products for attention under guarantee (unless otherwise agreed) must be returned to the manufacturer freight paid and, if accepted for free repair, will be returned to the customers address in Australia free of charge.

When returning the product for service or repair a full description of the fault and the mode of operation used when the product failed must be given. In any event the manufacturer has no other obligation or liability beyond replacement or repair of this product.

Modifications may be made to any existing or future models of the unit as it may deem necessary without incurring any obligation to incorporate such modifications in units previously sold or to which this guarantee may relate.

This document is the property of the instrument manufacturer and may not be reproduced in whole or part without the written consent of the manufacturer.

This product is designed and manufactured in Australia.